自20世纪30年代诞生以来,金属注射成型(MIM)已经成为一种重要的金属制造技术。基本上讲,MIM是指将金属粉末熔化在一起,形成小的金属型材。这使得能够在几乎没有浪费的情况下创造出高度复杂的形状,从而降低成本和减少浪费。最终组件几乎完全100%致密,比压铸的强度更高,比熔模或砂模的公差更好,比传统加工技术的形状更复杂。
自20世纪70年代以来,MIM一直是用于生产牙齿正畸托槽、表壳和枪械的主流技术。然而,如今的MIM技术能够制造用于高性能应用领域的复杂组件,如种植牙、人工关节、起搏器和喷气式发动机。
与其他金属成形工艺一样,初始金属粉末的成分决定了成品组件的成分和规格。杂质的存在也会影响零件的性能和寿命,因此组件必须符合当地、州和联邦的法定要求。化学分析在确保组件符合客户规范、法定要求和内部质量控制方面发挥着重要作用。
在金属注射成型中,有三种主要的合金化方法:元素粉混合、预合金和母合金。选择的原始金属粉末类型取决于合金方法;通过对其进行预混合或手动混合以获得正确的成分。
对于元素混合法,各种元素的粉末必须以正确的比例混合,以在合金化后产生正确的成分。
预合金工艺可以使用与最终合金规格的成分精确匹配的粉末。
母合金法使用添加了特定合金成分的元素粉末。大多数MIM不锈钢组件和一些低合金钢组件都是以这种方式生产而成。例如,由316L不锈钢制成的MIM零件采用的方法是将一份55Cr38Ni7Mo母合金与两份羰基铁粉结合。
必须在成型前验证原始金属粉末的成分,以确保它们符合最大产量和最少废料的要求。由于合金化过程十分复杂,还必须在装运前检查成品组件的成分,以确保良好的质量和性能。这对于制作用于医疗植入物或喷气式发动机零件等主要应用领域的组件尤为重要。这就是火花直读光谱法(OES)真正发挥作用的方面。
直读光谱法是检验MIM零件成分的理想分析技术。它非常精确,这也是OES几十年来一直用于最敏感应用领域(包括全球金属制造厂中的熔炼控制、杂质元素和微量元素检测)的原因。
火花OES光谱仪用于整个金属制造过程和供应链,包括分析废金属中的微量元素、控制进料、冶金过程和成品质量。我们将在本指南后文的示例中说明OES可以检测出许多具有极低含量的元素的存在情况,这对于确保组件符合最严格的规范非常重要。
可靠的OES测量需要在OES测量头接触样品的位置有一个干净、平整和平坦的表面。在进行测量之前,需要对样品表面进行磨样或铣床加工(视材料成分而定)。
由于MIM制造所得组件的尺寸通常非常小,用氮化硼盖板减小测量位置的面积来减小板中孔的尺寸可以获得精确的结果。可能需要使用特殊的样品适配器,以便正确夹持样品,尤其是形状复杂的样品。
控制金属部件中的碳含量至关重要,因为碳浓度的微小变化都会改变成品零件的微观结构和机械质量。因为粘结剂为碳基型,必须在脱粘阶段完全去除它,所以尤其要注意MIM组件中的碳含量。
突破性的OE750采用全新的光学概念设计,可检测金属中的所有元素,包括气体元素。通常更昂贵的仪器才具备这种性能水平,但使用动态CMOS检测器和将光学器件直接耦合到火花台等创新技术为OE750提供了要求严苛的金属注射成型应用领域所需的光学分辨率。
OE750的分析性能为碳含量控制提供了一种简单而经济的解决方案。
我们的同事OES应用科学家Maryam BeigMohamadi与我合作编写了一份详细指南,其中就我们如何帮助您找到金属注射成型过程质量控制的理想解决方案提供了见解。
在本指南中,我们将介绍:
近50年来,随着行业规范变得越来越严格,我们一直与金属制造企业合作,制定能为制造过程(包括质量和过程控制)提供支持的分析技术和解决方案。因此,我们在材料分析方面拥有专业的技术,如今我们直接为客户提供支持,帮助他们在其制造过程找到正确的分析解决方案。
如果您有在进行金属注射成型或获得成品组件之前的金属原料粉末质量控制问题,我们愿意为您提供帮助。通过与我们的应用团队合作,我们将能够找到适合您的解决方案。
联系我们